ANTI-SUPERBUGS (ASB) Pre-Commercial Procurement (PCP): Towards a fast & non-invasive detection of Superbugs

Gonçalo Carvalho Rodrigues (gfcarvalho@iconcologia.net) Granvia de L'Hospitalet 199-203, 08908 L'Hospitalet de Llobregat (+34932607500)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 688878

The Challenger: Superbugs

Multi-Drug Resistant Organisms (MDROs) are an international health issue due to the morbidity, mortality and healthcare costs arising from their proliferation in healthcare environments, leading to an estimate of around 2,609,911 yearly new cases of healthcare-associated infections in the European Union/European Economic Area alone¹. Early detection is considered one of the foundations for the fight against the MDRO menace², and medical technology has focused on reducing both the "time" and "sampling" factors on the identification of microorganisms in patients³, whilst increasing interoperability with electronic notification systems². However, a much older war affects the incidence of infectious diseases in a healthcare context: hygiene⁴. A technology that detects the environmental presence of a high-risk microorganism, in real-time, can reduce costs and the subsequent prevalence of infections by allowing for more accurate terminal cleaning procedures and identifying contaminated patient zone surfaces^{4,5}. An added ability to target both patients and healthcare professionals, and the contribution to environmental and hand hygiene, could be a major game-changer for healthcare institutions that adopt such a technology.

Challenges: uncovering and designing solutions

Microbiological and technological objectives

General:

- Improve quality of hospital care process by:
- detecting Hospital-Acquired Infection (HAI) microorganisms
- inform about the spreading of infections within healthcare facilities
- ICT prototype development
- Reduce costs of collateral healthcare effects

Reducing time of detection of specific microorganisms and allowing physicians to be aware of their presence in healthcare environments, including patient and physician-level detection in real-time, is the commitment of the Anti-SUPERBUGS project. To achieve this, companies will be presented with ASB's guidelines and requirements to design and manufacture the most suitable technology.

Figure 1. Superbugs appear due to selective pressure by antibiotic saturation. This project is also working towards the necessary prevention of further infection and antibiotic misuse¹ by allowing a workflow that leads to adequate and timely antibiotic therapy, and a thorough, albeit not constant, surveillance of the healthcare settings, patients and practitioners.

The challenges found by the Consortium:

What microorganisms should ASB focus on?

- Initial microorganism selection too broad
- Review of our produced needs by the European Commission
- R.: Prioritize the minimum MDRO requirements of the technology
- How can the ASB's needs be viable for companies?
- Hierarchy of the regionally important microorganisms
- Grade system based on requirements fulfilled by companies:
- -Mandatory requirements: passing grade -Mandatory + Extra requirements: passing + extra grade

- Promote Research & Development activities in advanced ICT
- User and patient friendly
- Ecologically sustainable

Technological details:

- Real-time detection in hospital environments, patients, healthcare professionals and fomites
- Non-invasive sampling
- VOC-based detection
- Detection interoperable with the Healthcare Information Systems
- Detection linked with geolocation in healthcare facility
- Automatic/unmanned detection*

Targeted microorganisms:

- *Clostridium difficile*
- *Klebsiella pneumoniae* (+ Extended-Spectrum Betalactamase & Carbapenemase production)
- *Acinetobacter baumannii* (+ Multi-Drug resistance)
- *Staphylococcus aureus* (Methicillin resistance)

Tools for defining the Challenge's requirements

Consortium level:

- "Wouldn't It Be Good If..." focus groups
- Dissemination activities
- State of the Art analysis

Regional level:

- Questionnaires directed at healthcare staff (medical staff, nurses, researchers, laboratory aides) and informatics experts
- Literature review and European and regional data regarding most prominent microorganisms
- Individual interviews with healthcare practitioners
- Meetings with directors from Medical Institutes, Hospitals and **Central Laboratories**

Gonçalo de Carvalho, expert biologist in esistances at the Catalan Institute of Oncology. possibility of creating new modules that hen applied to the technologies themselves purchasing them even more attractive to health

• R.: Competitive procurement setting for best technological solution

What type of technology can be expected of the ASB?

• Detection based on *volatile organic compounds (VOC)*

• Information and Communication Technology interoperable with Hospital Information Systems

Figure 3. This graph showcases the microorganisms and types of resistances most relevant to the procurers: KPC: Klebsiella pneumoniae carbapenemase; E. coli MDR: Eschrichia coli multi-drug resistant; MRSA: Methicillin-resistant Staphylococcus aureus; ESBL: Extended-spectrum Beta-lactamase; VRE: Vancomycin-resistant enterobacteriacea. The voting system consisted of a 3 level point scheme: "MUST HAVE"; "NICE TO HAVE"; "NOT RELEVANT". Apart from this voting system, verbal discussion and voting based on research and regional needs regarding each of the microorganisms, along with current technological developments, were also taken into account.

Pathogen	Inf. disease	VOC marker
A Baumannii	VAP	1-undecene, nonanal, decanal, 2,6,10 trimethyl-dodecane, 5-methyl-5- propyl-nonane, longifolene, tetradecane, 2-butyl-1-octanol
C. Difficile	Ulcerative colitis diarrhea	Ethanol, Butanol, Isopropanol
K. Pneumoniae	Bronchitis, pneumonia	Butaraldehyde, octyl acetate, tridecanol, dodecanal, butanoic acid

Table 1. Microorganisms voted and agreed upon as minimal
 requirements: Acinetobacter baumannii, Clostridium difficile, Klebsiella pneumoniae; infectious disease that these microorganisms are associate to: VAP: ventilator-associated pneumonia; and the biomarkers for each of these microorganisms based on volatile organic detection (VOC).

*Optional in regards to the use of the technology, but mandatory as an option the technology offers

Conclusions

- Anti-SUPERBUGS is fighting a worldwide epidemic and revealing international medical urgent needs
- Anti-SUPERBUGS is using new procurement approaches to launch a challenge for competitive developers
- Anti-SUPERBUGS is improving on a novel technological medical market

institutions by adapting them to their own

The tender which will be opened to companies in the next few months forms part of the Pre-Commercial Public Procurement programmes funded within the European Commission's H2020 framework of reference. All the information regarding the Antisuperbugs

Figure 2. Brussels (Belgium). First project review in April 2018. Meeting included most partners and the European Commission officials.

• Anti-SUPERBUGS is integrating different technological systems and exploring a promising niche of interoperability

Literature cited:

¹Cassini, A., Plachouras, D., Eckmanns, T., Sin, M. A., Blank, H. P., Ducomble, T., ... & Velasco, E. (2016). Burden of six healthcare-associated infections on European population health: estimating incidencebased disability-adjusted life years through a population prevalence-based modelling study. In: PLoS medicine, 13(10), e1002150.

²Steele, L., Orefuwa, E., & Dickmann, P. (2016). Drivers of earlier infectious disease outbreak detection: a systematic literature review. In: International Journal of Infectious Diseases, 53, 15-20.

³Pfaller, M. A., & Diekema, D. J. (2018). The Role of the Laboratory in Prevention of Healthcare-Associated Infections. In: Practical Healthcare Epidemiology, 271.

⁴Carling, P. C. (2018). What Is the Role of Mobile No-Touch Disinfection Technology in Optimizing Healthcare Environmental Hygiene?. In: Infection Prevention (pp. 67-82). Springer, Cham.

⁵Abbas, S. M., & Bearman, G. (2018). Healthcare Worker Apparel and Infection Prevention. In: Infection Prevention (pp. 113-116). Springer, Cham.

Further acknowledgements

We thank CERCA Program / Generalitat de Catalunya for institutional support. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 688878. Illustration by Diogo Matias.

Authors: Gonçalo Carvalho Rodrigues¹, Enric Limon Caceres¹, Jean Patrick Mathieu², Rossana Alessandrello², Esther Arévalo De Andrés², Ramon Maspons², Josep Trenado Alvarez⁷, Laura Buguñá Hoffmann⁷, Emanuele Torri⁶, Sara Bedin⁹, Maren Christina Geissler⁸, Ulla Elofsson³, Dag Ilver³, Beniam Ghebremedhin⁸, Robert Deisz⁴, Katherine Jeays⁵, Pablo Antonio Coret¹, Esther Calbo Sebastian⁷, Lauren Gwen Fleming¹, Carlota Gudiol¹, Raquel Azor¹, Marisa Martinez¹, Núria Freixas Sala⁷, Miquel Pujol Rojo¹, Petra A. Thürmann⁸, Parviz Ahmad-Nejad⁸, Stefan Wirth⁸, Christof Alefelder⁸, Ingo Klempien⁸, K. Rasche⁸, Sebastian G. Russo⁸

Filiation: ¹ Institut Català d'Oncologia (ICO) and IDIBELL² Agència de Qualitat i Avaluació Sanitàries de Catalunya (AQuAS) ³ Sp Sveriges Tekniska Forskningsinstitut AB (SP) ⁴ Universitaetsklinikum Aachen (UKA) ⁵ Sheffield Teaching Hospitals NHS Foundation Trust (STH) ⁶ Provincia Autonoma di Trento (PAT) ⁷ Hospital Mutua Terrassa (HMT) ⁸ HELIOS ⁹ Smart Procurement

